Martin Boundaries and Random Walks

نویسنده

  • Stanley A. Sawyer
چکیده

The first three sections give a quick overview of Martin boundary theory and state the main results. The succeeding sections will flesh out the details, and give proofs and examples. Virtually all of the results below are classical. The article Doob (1959) and the book by Kemeny, Snell, and Knapp (1976) are good sources for additional details. A recent survey article by Wolfgang Woess (1994) has an immense amount of information (both modern and classical) about Martin boundaries and random walks in general. Finally, Doob (1984) is an excellent source for classical Martin boundary theory for Brownian motion and the Laplacian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lamplighters, Diestel-Leader Graphs, Random Walks, and Harmonic Functions

The lamplighter group over Z is the wreath product Zq ≀ Z. With respect to a natural generating set, its Cayley graph is the Diestel-Leader graph DL(q, q). We study harmonic functions for the “simple” Laplacian on this graph, and more generally, for a class of random walks on DL(q, r), where q, r ≥ 2. The DL-graphs are horocyclic products of two trees, and we give a full description of all posi...

متن کامل

Random walks on random graphs

Random walks on random graphs – p. 1/2

متن کامل

Martin Boundaries of Random Walks: Ends of Trees and Groups

Consider a transient random walk Xn on an infinite tree T whose nonzero transition probabilities are bounded below. Suppose that Xn is uniformly irreducible and has bounded step-length. (Alternatively, Xn can be regarded as a random walk on a graph whose metric is equivalent to the metric of T.) The Martin boundary of Xn is shown to coincide with the space fl of all ends of T (or, equivalently,...

متن کامل

The ant in the labyrinth: random walks and percolation

The ant in the labyrinth: random walks and percolation – p.

متن کامل

t-Martin boundary of killed random walks in the quadrant

We compute the t-Martin boundary of two-dimensional small steps random walks killed at the boundary of the quarter plane. We further provide explicit expressions for the (generating functions of the) discrete t-harmonic functions. Our approach is uniform in t, and shows that there are three regimes for the Martin boundary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007